2,376 research outputs found

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Sympathetic Cooling of Trapped Cd+ Isotopes

    Get PDF
    We sympathetically cool a trapped 112Cd+ ion by directly Doppler-cooling a 114Cd+ ion in the same trap. This is the first demonstration of optically addressing a single trapped ion being sympathetically cooled by a different species ion. Notably, the experiment uses a single laser source, and does not require strong focusing. This paves the way toward reducing decoherence in an ion trap quantum computer based on Cd+ isotopes.Comment: 4 figure

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Yang-Lee Zeros of the Q-state Potts Model on Recursive Lattices

    Full text link
    The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for non-integer values of Q. Considering 1D lattice as a Bethe lattice with coordination number equal to two, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of neutral periodical points. Three different regimes for Yang-Lee zeros are found for Q>1 and 0<Q<1. An exact analytical formula for the equation of phase transition points is derived for the 1D case. It is shown that Yang-Lee zeros of the Q-state Potts model on a Bethe lattice are located on arcs of circles with the radius depending on Q and temperature for Q>1. Complex magnetic field metastability regions are studied for the Q>1 and 0<Q<1 cases. The Yang-Lee edge singularity exponents are calculated for both 1D and Bethe lattice Potts models. The dynamics of metastability regions for different values of Q is studied numerically.Comment: 15 pages, 6 figures, with correction

    Decoherence in ion traps due to laser intensity and phase fluctuations

    Get PDF
    We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.Comment: 2 figures, submitted to PR

    Abelian Sandpile Model on the Husimi Lattice of Square Plaquettes

    Full text link
    An Abelian sandpile model is considered on the Husimi lattice of square plaquettes. Exact expressions for the distribution of height probabilities in the Self-Organized Critical state are derived. The two-point correlation function for the sites deep inside the Husimi lattice is calculated exactly.Comment: 12 pages, LaTeX, source files and some additional information available at http://thsun1.jinr.dubna.su/~shcher
    • …
    corecore